On symmetric norm inequalities and positive definite block-matrices
نویسندگان
چکیده
منابع مشابه
Determinantal inequalities for positive definite matrices
Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.
متن کاملDDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملMatrices with Positive Definite Hermitian Part : Inequalities and Linear
The Hermitian and skew-Hermitian parts of a square matrix A are deened by H(A) (A + A)=2 and S(A) (A ? A)=2: We show that the function f(A) = (H(A ?1)) ?1 is convex with respect to the Loewner partial order on the cone of matrices with positive deenite Hermitian part. That is, for any matrices A and B with positive deenite Hermitian part ff(A) + f(B)g=2 ? f(fA + Bg=2) is positive semideenite: U...
متن کامل"Compress and eliminate" solver for symmetric positive definite sparse matrices
We propose a new approximate factorization for solving linear systems with symmetric positive definite sparse matrices. In a nutshell the algorithm is to apply hierarchically block Gaussian elimination and additionally compress the fill-in. The systems that have efficient compression of the fill-in mostly arise from discretization of partial differential equations. We show that the resulting fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2018
ISSN: 1331-4343
DOI: 10.7153/mia-2018-21-11